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Abstract
In this paper we continue to explore the notion of Rota–Baxter algebras
in the context of the Hopf algebraic approach to renormalization theory in
perturbative quantum field theory. We show in very simple algebraic terms that
the solutions of the recursively defined formulae for the Birkhoff factorization
of regularized Hopf algebra characters, i.e. Feynman rules, naturally give a
non-commutative generalization of the well-known Spitzer’s identity. The
underlying abstract algebraic structure is analysed in terms of complete filtered
Rota–Baxter algebras.

PACS numbers: 02.10.Hh, 02.10.Ox, 11.10.−z, 11.10.Gh

1. Introduction

The theory of Rota–Baxter type algebras has a long and interesting history. It was introduced
by the American mathematician Glen Baxter in 1960 [4] in the context of fluctuations in
probability theory. The subject was further explored especially by Atkinson [2], Kingman
[19], Cartier [6] and others, but foremost by the mathematician Gian-Carlo Rota in his work
in the late 1960s and early 1970s [27, 26] and later in his beautiful reviews [29, 30]. In the
centre of these works stood the category of commutative associative Rota–Baxter algebras and
its free objects. Recently, one of us together with Keigher gave a very concise description of
the latter in terms of a mixable shuffle product [16, 17], which provides a generalization of
the classical shuffle product [13]. As one of the main results of the above early work on (free)
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commutative Rota–Baxter algebras simple combinatorial and analytical proofs of Spitzer’s
identity were obtained. The latter is in its classical form a well-known object in probability
theory having many applications.

Let us mention here that the Lie algebraic version of the Rota–Baxter relation, under
the name (modified) classical Yang–Baxter6 equation, plays a prominent role in the theory of
integrable systems [3, 28, 31, 32]. Classical R-matrices, i.e. solutions of this equation, are
connected to the Riemann–Hilbert problem and related factorization problems.

Recently, the notion of Rota–Baxter algebra reappeared in the mathematics and, above
all, physics literature. On the mathematics side we would like to underline its intimate link to
Loday’s dendriform algebra structures [1, 12, 14, 23, 24]. From a physics viewpoint it appeared
in the Hopf algebraic approach to the theory of renormalization in perturbative quantum field
theory (pQFT). This approach provided a solid mathematical frame for renormalization theory
in terms of combinatorial Hopf algebras of Feynman graphs [8, 9, 20, 21].

Here, we will dwell mainly on the latter aspect by showing that the recently given solutions
to the recursively defined formulae for the algebraic Birkhoff factorization of regularized
Hopf algebra characters in terms of a so-called BCH-recursion [10, 11] provide natural non-
commutative generalizations of the above-mentioned Spitzer’s identity. We introduce the
notion of complete filtered not necessarily commutative Rota–Baxter algebras to underline the
abstract algebraic structure giving rise to this factorization. This approach allows us to derive
in a fairly simple manner an alternative recursion for renormalized Feynman rules.

The paper is organized as follows. In section 2 we collect some basic facts about (not
necessarily commutative) Rota–Baxter algebras. Section 3 contains the non-commutative
generalization of Spitzer’s identity in the context of complete filtered Rota–Baxter algebras
and an abstract algebraic formulation of Bogoliubov’s recursion. Using the above results we
finish this paper with a short review of the Birkhoff decomposition of regularized Hopf algebra
characters. This turns out to be an example for the more general content of the forgoing section,
placed in the context of the Hopf algebra approach to renormalization theory. It allows us to
derive a new recursion formula for renormalized Feynman rules solely based on iterating the
renormalized character φ+ instead of the counterterm φ−. We finish this paper with a short
summary and outlook.

2. Rota–Baxter algebras

Let K be a field of characteristic 0. By a K-algebra we mean an associative algebra over K

that is not necessarily unital nor commutative unless stated otherwise.

Definition 2.1. Let A be a K-algebra with a K-linear map R : A → A. We call A a
Rota–Baxter K-algebra and R a Rota–Baxter map (of weight θ ∈ K) if the operator R holds
the following Rota–Baxter relation7 of weight θ ∈ K:

R(x)R(y) + θR(xy) = R(R(x)y + xR(y)), ∀ x, y ∈ A. (1)

Remark 2.2.

(1) Obviously, the above definition extends to non-associative algebras in general, and the
field K may be replaced by an arbitrary commutative ring.

(2) In the rest of the paper we will fix the weight θ = 1, which is called the standard form or
the Rota–Baxter relation.

6 Here the relation is named after the physicists C-N Yang and Rodney Baxter.
7 Some authors denote this relation in the form R(x)R(y) = R(R(x)y + xR(y) + λxy). So that λ = −θ .
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(3) If R fulfils the standard form of (1) then R̃ := idA − R fulfils the same Rota–Baxter
relation.

(4) The ranges of R and R̃ = idA − R give subalgebras in A.
(5) R and R̃ = idA − R fulfil the following mixed relations:

R(x)R̃(y) = R(xR̃(y)) + R̃(R(x)y) (2)

R̃(x)R(y) = R(R̃(x)y) + R̃(xR(y)), x, y ∈ A. (3)

Example 2.3.

(1) On the algebra of Laurent series C[ε−1, ε]] we have (up to automorphisms) only the
following two Rota–Baxter maps R(r), r = 0, 1. Both are of weight θ = 1 and defined as
follows. For

∑∞
k=−m ckε

k ∈ C[ε−1, ε]] they give

R(r)

( ∞∑
k=−m

ckε
k

)
:=

−r∑
k=−m

ckε
k, r = 0, 1. (4)

Within renormalization theory, so-called dimensional regularization together with the
minimal subtraction scheme, i.e. RMS := R(1), play an important role [21].

(2) The case of a Rota–Baxter map of weight θ = 0, i.e. R(x)R(y) = R (R(x)y + xR(y)),
naturally translates into the ordinary shuffle relation, and finds its most prominent example
in the integration by parts rule for the Riemann integral. On the other hand, Jackson’s
q-integral [29] gives a generalization of the Riemann integral to a Rota–Baxter map of
weight θ = 1 − q.

Proposition 2.4. In the case of the Rota–Baxter algebra A to be a Lie admissible K-algebra,
the Rota–Baxter relation naturally extends to the Lie algebra LA with commutator bracket
[x, y] := xy − yx,∀x, y ∈ A:

[R(x), R(y)] + R([x, y]) = R([R(x), y] + [x,R(y)]). (5)

Proposition 2.5. Let A be a Rota–Baxter algebra with Rota–Baxter map R. Equipped with
the new product

a ∗R b := R(a)b + aR(b) − ab, (6)

the vector space underlying A is again a Rota–Baxter algebra of the same type, denoted by
AR .

The proof of this proposition is a fairly easy exercise and follows directly from the identity
(1) for θ = 1. We call this new Rota–Baxter algebra (AR,R) the RB-double of A, and ∗R the
RB-double product.

Remark 2.6.

(1) Let us remark here that this RB-double construction appeared in a Lie algebraic context
in [31], where the name was coined.

(2) The product ∗R can be written using R and R̃ = idA − R:

a ∗R b = R(a)b − aR̃(b), (7)

which can be interpreted in terms of the dendriform dialgebra structure of Loday [24].
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(3) From the definition of the ∗R product in (6) it is obvious that R and R̃ = idA − R become
an (not necessarily unital) algebra homomorphism from the RB-double AR to A:

R(a ∗R b) = R(a)R(b) (8)

R̃(a ∗R b) = −R̃(a)R̃(b). (9)

(4) As (AR, ∗R) is again of Rota–Baxter type, the above construction of the RB-double
extends to the so-called Rota–Baxter double hierarchy [11].

By definition, for the RB-double product (6) we have

a ∗R b = R(a)R(b) − R̃(a)R̃(b)

and so by (8)

R(a)R(b) = R(R(a)R(b) − R̃(a)R̃(b)).

Inductively, this can be generalized to
n∏

i=1

R(xi) = R

(
n∏

i=1

R(xi) − (−1)n
n∏

i=1

R̃(xi)

)
, xi ∈ A, i = 1, . . . , n (10)

and then specialized to the following simple formula of Kingman which appeared in [19]

R(u)n = R(R(u)n − (−R̃(u))n), u ∈ A. (11)

3. Non-commutative Spitzer’s formula

In the following, we do assume that an algebra in general is associative and unital, the unit
will be denoted by 1, but we do not assume that the algebra is commutative.

3.1. Spitzer’s formula

Spitzer’s formula [33] is regarded as a remarkable stepping stone in the theory of sums
of independent random variables in the fluctuation theory of probability. It was also the
motivation for Baxter to define his identity [4]. The identity of Spitzer has the following
algebraic formulation.

Theorem 3.1 ([27]). Let (A, R) be an unital commutative Rota–Baxter Q-algebra of weight
θ = 1. Then for a ∈ A, we have

exp(R(log(1 − ax)−1)) =
∞∑

n=0

xn R(R(R(· · · (R(a)a)a)a))︸ ︷︷ ︸
n-times

(12)

in the ring of power series A[[x]].

For other than the combinatorial proofs of Spitzer and Baxter, we refer the interested reader
to [2, 6, 19, 27, 34].

Using our previous work [11] on the Birkhoff decomposition of regularized characters
in the Hopf algebraic approach to renormalization theory in pQFT, we will derive a non-
commutative version of Spitzer’s formula. Quite remarkably, the proof presented here is
similar to the one given in the commutative case by Kingman [19]. Furthermore, once this
formula is obtained, a simple but beautiful result of Atkinson in theorem 3.6 applies to give
us a new recursive formula back in the realm of Birkhoff decomposition in renormalization
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theory with respect to the so-called renormalized character, which we will describe in the next
section.

We first consider Rota–Baxter algebras with a complete filtration. This setup allows us
to apply our results to the Rota–Baxter algebra of renormalization introduced in [10]. The
general case of Rota–Baxter algebras A will be treated by considering the power series ring
A[[x]] in the commuting variable x.

3.2. Complete Rota–Baxter algebras

We first introduce the category of complete Rota–Baxter algebras.

Definition 3.2. A ‘filtered Rota–Baxter algebra’ is a Rota–Baxter algebra (A, R) together
with a decreasing filtration An, n � 0 of Rota–Baxter subalgebras. Thus, we have

AnAm ⊆ An+m

and

R(An) ⊆ An.

Such a filtered Rota–Baxter algebra is called ‘complete’8 if ∩An = 0 and if the resulting
embedding

A → Ā := lim← A/An

is an isomorphism.

By the completeness of the filtered Rota–Baxter algebra (A, R), the functions

exp : A1 → 1 + A1, exp(a) :=
∞∑

n=0

an

n!
,

log : 1 + A1 → A1, log(1 + a) := −
∞∑

n=1

(−a)n

n

are well defined. This has the following (classical) interpretation of Lie groups and Lie
algebras.

1 + A1 has a Lie group structure by the multiplication in A, and A1 has a Lie algebra
structure by the commutator bracket [a, b] := ab − ba. Then the maps exp and log are the
isomorphisms from the Lie algebra to the Lie group and its inverse.

Example 3.3. For the Hopf algebra HFG of Feynman graphs (or rooted trees) and the ring
of Laurent series A := C[ε−1, ε]] with the Rota–Baxter operator defined to be the projection
to the pole part, i.e. R := R(1) : C[ε−1, ε]] → ε−1C[ε−1] in (4), the algebra L(HFG,A)

with the convolution product and lifted Rota–Baxter map R : L(HFG,A) → L(HFG,A) is
a complete Rota–Baxter algebra [8, 15, 20]. See [25, II.3.3.] for the proof. Further in this
setting 1 +A1 is the group of (regularized) characters and A1 is the Lie algebra of infinitesimal
characters.

For a ∈ A, inductively define

(Ra)[n+1] := R((Ra)[n] a) and (Ra){n+1} := R(a (Ra){n})

with the convention that (Ra)[1] = R(a) = (Ra){1} and (Ra)[0] = 1 = (Ra){0}.
8 To avoid possible confusion, we alert the reader that in [17] the concept of complete filtered Rota–Baxter algebras
has been defined, where the filtration is canonically derived from the Rota–Baxter operator. That definition is not
needed in this paper.
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Also by the completeness, there is a unique map χ : A1 → A1 that satisfies the equation

χ(a) = a − BCH(R(χ(a)), R̃(χ(a))) (13)

which was introduced in [11] and will be coined as BCH-recursion for short. Here, BCH(x, y)

denotes the Baker–Campbell–Hausdorff formula such that

exp(x)exp(y) = exp(x + y + BCH(x, y))

which is a power series in x, y of degree 2. Relation (13) was used in our approach to the
algebraic Birkhoff factorization, in connection with a classical R-matrix notion coming from
a Lie Rota–Baxter relation (5), see section 4.

We call it the BCH-recursion since χ(a) is defined to be limn→∞ χn(a) where

χ0(a) = a,

χn+1(a) = a − BCH(R(χn(a)), R̃(χn(a))).

To see why this gives the unique solution to recursion relation (13), we first define for
a ∈ A,� : A → A [11]

�(a) := BCH(R(a), R̃(a)).

Then for s ∈ An, n � 1,�(a + s) is �(a) plus a sum in which each term has s occurring at
least once, and hence is contained in An+1. Thus, we have

�(a mod An) ≡ �(a) mod An+1. (14)

Now we have

χ1(a) = a + �(χ0(a)) = a + �(a) ≡ a ≡ χ0(a) mod A2.

By induction on n and (14), we have

χn+1(a) = a + �(χn(a))

≡ a + �(χn−1(a) mod An+1)

≡ a + �(χn−1(a)) mod An+2

≡ χn(a) mod An+2.

Thus, limn→∞ χn(a) exists and is a solution of (13).
Suppose b is another solution. Then, as above, we have

χ0(a) = a ≡ a + �(b) ≡ b mod A2.

Induction on n gives the following:

χn+1(a) = a + �(χn(a))

≡ a + �(b mod An+2)

≡ a + �(b) mod An+3

≡ b mod An+3.

Thus, b = limn→∞ χn(a). The reader may find it helpful to consult the nice expository work
of Manchon [25] for a more conceptual proof in the context of Lie algebras.

Theorem 3.4. Let (A, R,An) be a complete filtered Rota–Baxter algebra of weight θ = 1.
Let a ∈ A1.

(1) The equation

b = 1 − R(ba) (15)

has a unique solution

b = exp(−R(χ(log(1 + a)))). (16)
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(2) The equation

b = 1 − R̃(ab) (17)

has a unique solution

b = exp(−R̃(χ(log(1 + a)))). (18)

Proof. We only need to verify for the first equation. The proof for the second equation is
similar.

Since a is in A1 and R preserves the filtration, the series

b = 1 + R(a) + R(R(a)a) + · · · + (Ra)[n] + · · ·
defines a unique element in A and is easily seen to be a solution of (15). Conversely, if c ∈ A
is a solution of (15), then by iterated substitution, we have

c = 1 + R(a) + R(R(a)a) + · · · + (Ra)[n] + · · · .
Therefore, equation (15) has a unique solution.

To verify that (16) gives the solution, take u := log(1 + a), a ∈ A1. Using (11), for our
chosen b we have

exp(−R(χ(log(1 + a)))) = exp(−R(χ(u)))

=
∞∑

n=0

(−R(χ(u)))n

n!

= 1 + R

( ∞∑
n=1

(−1)n

n!
((R(χ(u)))n − (−R̃(χ(u)))n)

)

= 1 + R

( ∞∑
n=0

(−1)n

n!
(R(χ(u)))n −

∞∑
n=0

(−1)n

n!
(−R̃(χ(u)))n

)

= 1 + R(exp(−R(χ(u))) − exp(R̃(χ(u)))).

By the definition of the BCH-recursion χ in equation (13), we have

exp(R(χ(u)))exp(R̃(χ(u)))

= exp(R(χ(u)) + R̃(χ(u)) + BCH(R(χ(u)), R̃(χ(u))))

= exp(χ(u) + BCH(R(χ(u)), R̃(χ(u))))

= exp(u).

Thus,

exp(−R(χ(log(1 + a)))) = 1 + R(exp(−R(χ(u))) − exp(−R(χ(u)))exp(u))

= 1 + R(exp(−R(χ(u)))(1 − exp(u)))

= 1 + R(exp(−R(χ(log(1 + a))))(1 − exp(log(1 + a))))

= 1 − R(exp(−R(χ(log(1 + a)))a).

This verifies the first equation. �

Corollary 3.5. Let (A, R,An) be a complete filtered Rota–Baxter algebra of weight θ = 1.
For a ∈ A1, we have

∞∑
n=0

(Ra)[n] = exp(−R(χ(log(1 + a)))) (19)



11044 K Ebrahimi-Fard et al

∞∑
n=0

(R̃a){n} = exp(−R̃(χ(log(1 + a)))). (20)

Proof. By theorem 3.4 and its proof, both sides of (19) are solutions of (15). This proves (19).
The proof of (20) is the same, by considering solutions of the recursive equation (17).

�

For later reference, we record here a simple and attractive theorem of Atkinson [2] whose
proof just uses relations (2) and (3).

Theorem 3.6. Let (A, R) be an associative unital but not necessarily commutative Rota–
Baxter algebra. Assume b and b′ to be solutions of the recursive equations (15) and (17),
then

b(1 + a)b′ = 1.

We now prove the Birkhoff decomposition of filtered Rota–Baxter algebras.

Theorem 3.7. Let (A, R) be an associative unital complete Rota–Baxter algebra with filtration
An, n � 0. The following conditions are equivalent.

(i) R is idempotent: R2 = R when restricted to A1.
(ii) There is a direct product decomposition of algebras

A1 = R(A1) × R̃(A1).

(iii) There is a direct product decomposition of groups

(1 + A1) = (1 + R(A1)) × (1 + R̃(A1)).

Remark 3.8. Under the assumption in (i), the statement in (ii) is the Atkinson decomposition
[2] and the statement in (iii) specializes to give the uniqueness of the Birkhoff decomposition
of Connes and Kreimer. See section 4 for details.

Proof. (1) ⇔ (2) is clear and does not need the completeness assumption.
(2) ⇒ (3): we just need to show that, for each a ∈ A1, there is a unique c ∈ R(A1) and

a unique c̃ ∈ R̃(A1) such that

1 + a = (1 + c)(1 + c̃).

Let a ∈ A1 be given, and let b and b̃ be the solution of (15) and (17), respectively. Then by
theorem 3.6, we have

b(1 + a)b̃ = 1.

By their constructions and (8), (9), we have b = 1 − b1 and b̃ = 1 − b̃1 for b1 ∈ R(A1) and
b̃1 ∈ R̃(A1). Thus,

b−1 = 1 + b1 + b2
1 + · · · ∈ 1 + R(A1),

b̃−1 = 1 + b̃1 + b̃2
1 + · · · ∈ 1 + R̃(A1).

This proves the existence.
For the uniqueness, suppose we have

1 + a = (1 + c)(1 + c̃) = (1 + d)(1 + d̃)
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with c, d ∈ R(A1) and c̃, d̃ ∈ R̃(A1). Then,

(1 + d)−1(1 + c) = (1 + d̃)(1 + c̃)−1

which is in (1 + R(A1)) ∩ (1 + R̃(A1)). But this intersection is {1} because

1 + R(d) = 1 + R̃(d ′) ⇒ R(d) = R̃(d ′) ⇒ R(d) = 0.

(3) ⇒ (2): since R + R̃ = id, we have A1 = R(A1) + R̃(A1). So we just need to show
R(A1) ∩ R̃(A1) = 0. This is true if and only if (1 + R(A1)) ∩ (1 + R̃(A1)) = {1}. �

3.3. Algebraic Bogoliubov map

For a ∈ A1, let a− be the unique solution of b = 1 − R(ba) from theorem 3.4 and let

γ (a) = a−a.

Similarly, let ã be the unique solution of b = 1 − R̃(ab) and let

γ̃ (a) = aã.

By proposition 2.5, A1 with the product ∗R is still a complete algebra. Define

expR : A1 → 1 + A1, expR(a) :=
∞∑

n=0

a∗Rn

n!

where a∗Rn is the nth power of a under the product ∗R .

Theorem 3.9. The following diagram commutes.

A1
exp

−χ

1 +A1

β

θ A1

−γ

A1

expR

R×(−R̃)

1 +A1

R′×(−R̃′)

θ A1

R×(−R̃)

R(A1) × R̃(A1)
exp× exp

(1 + R(A1)) × (1 + R̃(A1))
θ×θ

R(A1) × R̃(A1) (21)

Here, θ(x) = x − 1 and β is defined to be the composite

β = θ−1 ◦ (−γ ) ◦ θ.

So, β(c) = 1 − γ (c − 1). Similarly, define R′ × (−R̃′). So,

R′ : 1 + A1 → 1 + A1, a �→ 1 + R(a − 1),

R̃′ : 1 + A1 → 1 + A1, a �→ 1 − R̃(a − 1).

We call the map β the algebraic Bogoliubov map because it gives the Bogoliubov map in
renormalization theory.

Proof. We only need to prove the commutativity of the upper half and the lower half of the
diagram. By the way the two maps in the middle column are defined and by the bijectivity of
the horizontal maps in the right half of the diagram, it follows that the other squares are also
commutative.
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Verifying the commutativity of the top half means to verify

−γ ◦ θ ◦ exp(u) = θ ◦ expR ◦ (−χ(u)),

that is,

−γ (exp(u) − 1) = expR(−χ(u)) − 1.

By theorem 3.4, and reversing the derivations in its proof, we have

−γ (exp(u) − 1) = −exp(−R(χ(u)))(exp(u) − 1)

= −exp(−R(χ(u)))exp(u) − exp(−R(χ(u)))

= exp(−R(χ(u))) − exp(R̃(χ(u))).

By (8) and (9) we obtain

R(expR(u)) = exp(R(u)) + R(1) − 1, (22)

R̃(expR(u)) = −exp(−R̃(u)) + R̃(1) + 1. (23)

Thus, the last term of the earlier equation is

R(expR(−χ(u))) + 1 − R(1) + R̃(expR(−χ(u))) − 1 − R̃(1) = expR(−χ(u)) − 1,

as is desired.
Verifying the commutativity of the lower half of the diagram means to verify the two

equations

exp(R(u)) − 1 = R(expR(u) − 1), exp(−R̃(u)) − 1 = −R̃(expR(u) − 1)

which are immediately from (22) and (23). �

3.4. General Rota–Baxter algebras

Now let (A, R) be any Rota–Baxter algebra of weight θ = 1. Consider the power series ring
A[[x]] on one (commuting) variable x. So A[[x]] = Z[[x]] ⊗ A. Define an operator,

R : A[[x]] → A[[x]], R
( ∞∑

n=0

anx
n

)
=

∞∑
n=0

R(an)x
n.

Lemma 3.10. (A[[x]],R) is a Rota–Baxter algebra.

Proof. This is a straight forward verification. For f = ∑
n anx

n, g = ∑
m bmxm, we have

R(f )R(g) =
(∑

n

R(an)x
n

)(∑
m

R(bm)xm

)

=
∑
n,m

R(an)R(bm)xm+n

=
∑
n,m

(R(R(an)bm) + R(anR(bm)) − R(anbm))xm+n

= R
((∑

n

R(an)x
n

) (∑
m

bmxm

))
+ R

((∑
n

anx
n

) (∑
m

R(bm)xm

))

− R
((∑

n

anx
n

)(∑
m

bmxm

))

= R(R(f )g) + R(fR(g)) − R(fg). �
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Now it is easy to verify that, with the filtration

An := xnA[[x]], n � 0,

A[[x]] is a complete Rota–Baxter algebra. By theorem 3.4, we have

Corollary 3.11. For a ∈ A, we therefore have
∞∑

n=0

(R(ax))[n] = exp(−R(χ(log(1 + ax)))). (24)

Remark 3.12. Obviously, for A being commutative, we have χ(a) = a, and relation (19) just
reduces to the classical Spitzer’s identity. Our result therefore is the natural non-commutative
generalization of this well-known identity.

By comparing coefficients of similar powers of x on the two sides of equation (24), we
obtain identities in Rota–Baxter algebras that are not necessarily commutative.

4. Birkhoff decomposition in renormalization theory

Now we consider the case when the complete Rota–Baxter algebra is as in example 3.3. We will
use the notation in articles [10] and [11]. For a general review on the Hopf algebraic approach
to renormalization theory in pQFT, we refer the reader to the original work [7, 8, 20, 21].
For a recent and elaborate review of the Connes–Kreimer work on renormalization theory, we
refer the reader to the work by Manchon [25].

Kreimer and, later, Connes and Kreimer were able to uncover the mathematical content
underlying the algebraic combinatorial process of renormalization theory in pQFT, by
organizing the combinatorics in terms of a combinatorial, i.e. graded connected Hopf algebra
structure on Feynman graphs, denoted by HFG. Furthermore, by interpreting Feynman rules as
regularized characters, i.e. multiplicative maps from the above Hopf algebra of Feynman graphs
into an associative unital and commutative Rota–Baxter algebra, the process of renormalization
became a Birkhoff decomposition of these characters.

We will denote the space of linear functionals from HFG into the Rota–Baxter algebra
(A, R) by L(HFG,A). L(HFG,A) carries the structure of an associative unital non-
commutative algebra with respect the convolution product, denoted by

f 	 g := mA(f ⊗ g)
, f, g ∈ L(HFG,A).

Here, 
 denotes the coproduct in HFG. The unit in L(HFG,A) is given by the counit
ε : HFG → 1K. Let φ be a regularized character, i.e. an element in the group G ⊂ L(HFG,A),
generated by the infinitesimal characters forming a Lie algebra g ⊂ L(HFG,A). We then lift
the Rota–Baxter map R : A → A to the algebra L(HFG,A), see proposition 4.1 below.

In [8], it was shown that for arbitrary φ ∈ G there exist two unique characters, defined
recursively for � ∈ ker(ε) ⊂ HFG by

φ± : HFG → A,




φ−(�) := −R
[
φ(�) +

∑′
(�) φ−(�′)φ(�′′)

]
,

φ+(�) := R̃
[
φ(�) +

∑′
(�) φ−(�′)φ(�′′)

]
, and

φ±(1) := 1
(25)

such that

φ = φ−1
− 	 φ+. (26)

Here, we used Sweedler’s notation, 
(�) := � ⊗ 1 + 1 ⊗� +
∑′

(�) �′ ⊗�′′ for � ∈ HFG. The

character S
φ

R := φ− was called twisted antipode, and provides the counterterm. The so-called
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renormalized character φ+ gives the renormalized Feynman rules. To proof the multiplicativity
of φ− and φ+ essential use of the Rota–Baxter structure on the target space A of the characters
was made. Using the following

Proposition 4.1 ([10]). Define the linear map R : L(HFG,A) → L(HFG,A) by �→ R(f ) :=
R ◦ f : HFG → R(A). Then L(HFG,A) becomes an associative, unital non-commutative
Rota–Baxter algebra. The Lie algebra of infinitesimal characters g ⊂ L(HFG,A) becomes a
Lie Rota–Baxter algebra, i.e. for Z′, Z′′ ∈ g,

[R(Z′),R(Z′′)] = R([Z′,R(Z′′)]) + R([R(Z′), Z′′]) − R([Z′, Z′′]). (27)

We can write equivalently, φ− in terms of the recursive equation

φ− = ε − R[φ− 	 (φ ◦ J )], (28)

where J , the projector onto the augmentation ideal ker(ε), is defined in terms of the unit map
η : 1K → HFG, J := idHFG − ηε. Note that by linearity of φ we have

(ε + φ ◦ J ) = φ.

Let φ ∈ G be generated by Z ∈ g, i.e. φ = exp	(Z). So by theorem 3.4, the recursion (28)
for φ− is solved by

φ− = exp	(−R(χ(log	(ε + φ ◦ J )))) (29)

= exp	(−R(χ(Z))) (30)

as proved in [11].
We now let φ̃ be defined by the recursive equation

φ̃ = ε − R̃[(φ ◦ J ) 	 φ̃]. (31)

So by theorem 3.6, we have

φ− 	 φ 	 φ̃ = ε.

On the other hand, following (26), it is well known that, for the unique renormalized character
φ+, we have

φ− 	 φ 	 φ−1
+ = ε.

Since both equations hold in the Lie group G of regularized characters, we must have

φ̃ = φ−1
+ (32)

= exp	(−R̃(χ(Z))). (33)

The second equality follows by theorem 3.4 (equation (18)) and was shown for φ+ directly in
[11]. This simple result implies a new recursive relation for φ+ in terms of R̃

φ+ = ε − R̃[φ+ 	 (φ−1 ◦ J )]. (34)

Note that this result is completely natural. The antipode S (S2 = id) can be written in
terms of the projector J as

S = −m ◦ (S ⊗ J ) ◦ 
 = −m ◦ (J ⊗ S) ◦ 
. (35)

Iterating φ− on the left-hand side of the tensor product, it was used to deform the character
φ ◦ S to the counterterm character φ−. But one naturally expects that one also can derive the
forest formula by recursing φ+, and this is what the above formula achieves. The appearance
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of φ−1 then instead of φ compensates for the minus sign in front of R̃, making use of the very
exponentiation in (33).

Also, we recall ourselves that the renormalized character is a character in the image of
R̃, where, R̃ acts on the Bogoliubov character, a map which replaces all subdivergences by
their evaluation under φ+, a fact guaranteed by the structure of the Hochschild cohomology
of such Hopf algebras [5, 22]. Thus, one naturally recurses φ+ in terms of itself, a fact
evident also in the basic structure of renormalized Dyson–Schwinger equations, which can be
completely written in terms of themselves. The above formula makes that fact self-evident on
a combinatorial level.

Summarizing, by the above argument we find naturally the following two recursions for
the factors of the Birkhoff decomposition of a character φ:

φ+ = ε − R̃[φ+ 	 (φ−1 ◦ J )] and φ− = ε − R[φ− 	 (φ ◦ J )]. (36)

Using the augmentation ideal projector J := idHFG − ηε we can derive the simple identity

φ 	 (φ−1 ◦ J ) = φ 	 φ ◦ S ◦ J (37)

= φ 	 φ ◦ S ◦ (
idHFG − ηε

)
(38)

= φ 	 φ ◦ S − φ 	 (φ ◦ S ◦ ηε) (39)

= ε − φ = −φ ◦ J, (40)

which allows us to show, using φ = φ−1
− 	 φ+, that

−φ+ 	 (φ−1 ◦ J ) = φ+ 	 φ−1 	 (φ ◦ J ) (41)

= φ+ 	 φ−1
+ 	 φ− 	 (φ ◦ J ) (42)

= φ− 	 φ ◦ J. (43)

This allows us to get back the original φ+-recursion (25) in terms of the Bogoliubov character
[11], i.e. Bogoliubov’s R-map, defined via the RB-double product 	R, exp	R(χ(Z)) =
φ− 	 φ ◦ J

φ+ = ε + R̃[φ− 	 (φ ◦ J )]. (44)

Let us for the sake of clarity compare the above results in the setting of combinatorial
Hopf algebras and regularized characters with the findings of section 3, i.e. general filtered
Rota–Baxter algebras. To clearly show the connection, we display the following ‘dictionary’.
We fix a character φ : HFG → A in G and let a := φ ◦ J . In the following table, entries in the
left column are results proved earlier in this paper for general complete filtered Rota–Baxter
algebras, and entries in the right column are their interpretations in the non-commutative
associative unital Rota–Baxter algebra (L(HFG,A),R).

a φ ◦ J

a− = 1 − R(a−a) φ− = ε − R(φ− 	 (φ ◦ J ))

ã = 1 − R̃(aã) φ̃ = ε − R̃((φ ◦ J ) 	 φ̃)

a−(1 + a)ã = 1 φ− 	 (ε + φ ◦ J ) 	 φ̃ = φ− 	 φ 	 φ̃ = ε

a+ := ã−1 = a−(1 + a) φ+ := φ− 	 φ = φ̃−1

a+
(i)= 1 − R̃

(
a+

( −a

1 + a

))
φ+ = ε − R̃(φ+ 	 (φ−1 ◦ J ))

−a+

( −a

1 + a

)
(ii)= a−a −φ+ 	 (φ−1 ◦ J ) = φ− 	 (φ ◦ J ).
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Proof.

(i)

1 − R̃

(
a+

( −a

1 + a

))
= 1 − R̃

(
a−(1 + a)

( −a

1 + a

))
(45)

= 1 + R̃(a−a) = 1 − R(a−a) + a−a = a+. (46)

(ii)

−a+
−a

1 + a
= −a−(1 + a)

−a

1 + a
(47)

= a−a. (48)

The diagram (21) specializes to the following diagram in the case of renormalization: let g be
the complete filtered Lie algebra of derivations in L(HFG,A),G the Lie group of characters.
For � ∈ HFG, let b[φ](�) = −(

φ(�) +
∑′

(�) φ−(�′)φ(�′′)
)

be the Bogoliubov map. We have
the following diagram when restricted to ker ε

g exp�
��

−χ

��

G

b

��
g exp�R

��

R×(R−id)

��

GR

R×(R−id)

��
g− × g+ exp�

�� G− × G+

This is the reason that the map β in (21) is called the algebraic Bogoliubov map. �

5. Summary and outlook

In this work we derived, in the realm of complete filtered Rota–Baxter algebras, by simple
algebraic terms a non-commutative version of Spitzer’s identity. The latter is a well-known
object in the theory of random variables. The simplicity of the proofs relies on a more general
result obtained in previous work by solving the recursively defined formulae of the Birkhoff
decomposition of regularized characters in terms of a so-called BCH-recursion. Initially, this
was done in the Connes–Kreimer Hopf algebraic approach to renormalization theory in pQFT.
This approach allowed us to derive a new forest-like formula for the renormalized character.

Also, we believe that the fact that the classical Spitzer’s formula is intimately related to
theory of symmetric functions and generalizations of the shuffle product might allow us to
extend these connections via its non-commutative version given here.
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